Avogadro's Constant (N_A): Where it Comes From ? What it Means? And Who has Measured it?

Stanko R. Brankovic Cullen College of Engineering University of Houston

www2.egr.uh.edu/~ecnfg

High School Outreach Program

Prof. Stanko R. Brankovic, Ph.D.

Teacher: Ms. Sarah Castillo, MSS

www2.egr.uh.edu/~ecnfg

High School Outreach Program, Jan. 22th 2011

North Shore Senior

Ome to University of Hous

CULLENCOLLEGE

F.N

www2.egr.uh.edu/~ecnfg

0

High School Outreach Program

Spring 2009

Spring 2010

Fall 2010

Education Material Available at:

www2.egr.uh.edu/~ecnfg/outreach

Who is This Funny Looking Italian Guy

Amadeo Avogadro 1776-1856

> Equal volumes of gasses under the same conditions of pressure and temperature contain the same number of molecules

Avogadro's Law

"Volumi eguali di gas nelle stesse condizioni di temperatura e di pressione contengono lo stesso numero di molecole ". anches avogains

An Important Conclusion

Measuring the weight of equal volumes of different gasses we can get the relative weight ration of their atoms/molecules

This fact establishes a fundamental property of different elements and that is their atomic weight or i.e. molar mass

Some hippie Russian guy took this idea further and made the life of all chemists easier

An Epic Agreement: 1 mole of H_2 is 2 g, and 1 mole of O_2 is 32 g

www2.egr.uh.edu/~ecnfg

Mole is Measure of Quantity of Matter Mole ; [mol]

Hydrogen is the lightest element in the periodic table. So it was decided that one mole of this element has 1 g of mass. The molar masses of other elements were established by simple comparison i.e. using the ratio between the mass of I mol of H (C) and mass of 1 mol of other elements.

One mole of matter is the certain amount /weight, that contains an arbitrary number of elementary particles (this number we have to agree on) having the same property as the bulk of this matter (compounds=molecules, elements=atoms)

One mole of any matter has the **same number** of elementary particles (molecules or atoms)

What is this number ?

This is the number of atoms that the weight of 12 g of C_{12} carbon contains (this is an agreement). Historically, first element to serve as an etalon in definition of mole was oxygen

Solid NaCl

Liquid H₂O

www2.egr.uh.edu/~ecnfg

Who Has Measured the N_A First?

Johann Josef Loschmidt 1821-1895

Jean Perrin 1870-1942

Lord William B. Kelvin 1824-1907

Albert Einstein 1879-1955

Robert Millikan 1868-1953 Currently Accepted Consensus for Accurate Value of N_A (NIST 1971) N_A =6.0221499x10²³

Cathode and Anode are Cu Electrolyte is 0.05 M H₂SO₄

Experimental Set Up

Time / min	1	2	3	4	5	6	7	8	9	10
Current /A										

High School Outreach Program, Jan. 22th 2011

Let's Do It, and Let's Measure N_A

1.Average Current:

exp#1____.165A____;exp#2___.185A_____

2.-3.Charge = Average Current*time passed (600 sec) exp#1___99.6C____;exp#2__111C_____

4. # of electrons passed=Charge/1.6022x10⁻¹⁹ C exp#1_____6.217E2/____;exp#2____6.928E2/_____

5. Number of Cu Atoms Dissolved = #electrons passed/2 (Cu = Cu²⁺ + 2e⁻) exp#1___3.1/8E2/____;exp#2__3.464E2/____

6. Mass of Cu dissolved (Δm) exp#1___./33g____;exp#2__./33g_____

7. # of Cu atoms per gram= #Cu Atoms dissolved/ ∆m exp#1__9.418E21____;exp#2___1./49E22____

8. N_A=#of Cu atoms per gram*63.5 g/mol exp#1__5.98E23____;exp#2___6.66E23____

< N_A >= 6.32E23

