ECE5320

Lecture #5

NAND-PARTICLE FUSION REVISITED

REMEMBER:

NANO-PARTICLE FUSION - REVISITED

The = Tour - DT (D)

DAU 3 ~=[1-18=]. 18e]³

X [] = []

MELTING 15 Posible

DUKINI NP Fusion

The property of the coagulation melting point of the coagulated particle particle size [nm]

Figure 3.13 Temperature after coagulation of two aluminum particles of equal size. The melting temperature of aluminum nanoparticles is plotted as a function of particle size. Temperature flashing during coagulation may cause melting of the coagulated particle.

COMBINING (1) on (1') will

STRUCTURES OF NP

- EXP. OBSERVATION:

NP TAKE STRUCTURE

OF THE High TEMP
STABLE BULL PHASE

- Why:

ONE REASON TN/PT

Figure 3.14 Normalized unit cell volume for different Al_2O_3 and Fe_2O_3 phases as a function of grain size [15]. Normalization provides a constant number of formula units per unit cell; otherwise, comparison is impossible. In the γ-phase, the unit cell volume is increased as the particle size decreases. A preference for high-temperature structures as the particle size decreases is clearly visible.

STRUCTURE OF NPS - GENERAL PULE: NP TAKE THE PHASE SYMETRIC ARRANTEM MORE - OXIDES!

STRUCTURE OF NP

Figure 3.15 Lattice parameter of nanoparticulate BaTiO₃, a ferroelectric material with perovskite structure, as a function of the annealing temperature. During annealing, grain growth occurred [16]; hence, an increasing annealing temperature was equivalent to an increasing grain size. All lattice parameters were measured at room temperature, and particle sizes determined by electron microscopy. For details, see the text.

DIHEREN I Exp. SAME Guclus.

Bations - Curric STRUCTI - NO DIFERENT HIGHT STABLE STRUCTURE

Figure 3.16 Lattice constant of BaTiO₃ in the cubic structure as a function of particle size [16]. The lattice constant decreases with increasing particle size. Values in the shaded area were deemed unreliable as the material was not completely reacted.

for Di at

STRUCTURE OF NPS

- FERDELECTRIC MATERIANS

- HIGHT PHASE IS DISORDENED

- Lou T PHASE 15

STUENTO

LP-DISORPERED
THASE

Figure 3.17 Pseudotetragonal distortion and the transition paraelectric—antiferroelectric of $PbZrO_4$ as a function of grain size [15]. A reduction in grain size had a similar effect as an increase in temperature. The paraelectric, cubic phase was the high-temperature phase; the antiferroelectric, tetragonal distorted phase was the low-temperature phase.

TRUCTURE OF NPS - CURIE TEMP, To ORPER M'SORPER DAASE TRANSILION T - EFECT IS THE SAME AS INCRESING T

Figure 3.18 Dielectric constant and Curie temperature of PbZr_{0.3}Ti_{0.7}O [17]. For small particle sizes transition occurs to the paraelectric, high-temperature phase. A reduction in particle size and high temperature temperature of PbZr_{0.3}Ti_{0.7}O₃. Below has similar effects on particle structure and properties. The lattice constant (a = 0.8 nm) was temperature was no longer defined. Tl selected as the dimension for the ordinate. (a) Dielectric constant of PbZr_{0.3}Ti_{0.7}O₃. At small temperature.

particle sizes (< 5.6 lattice constants; the material was in the paraelectric, temperature phase, whereas at large sizes the material was ferroelectric. (size of eight lattice constants, the Cu was paraelectric, independent of the

LANDAU'S ORDER PARAM. M M=1 - IDE4 L CRYSTAL 7 M 15 ENTROPICAL M= O - MEZT (LICUID) | DESCRIPTION OF CRYSTAL ORDER MA DEGRES OF ATOM MOTION/PREEDOM me while

ECTED BY SUPF.

M FUR NP

M -> 0 Ks

bーッ o

DISORDER IN NP
increases as NP
DIMMETER DECREASE
(METAL NP!)

Figure 3.19 Landau's order parameter M for nanoparticles of tin as a function of radius and particle size [18]. The degree of order decreased with decreasing particle radius, and also from the interior to the surface. For perfectly crystallized particles M=1; for melted particles, M=0.

ShAPE FLUCTUATION OF NP

loops

Figure 3.21 A series of electron micrographs of 2-nm gold particles [19], taken at intervals of 1/60 s. The images show spontaneous changes in particle habitus at a temperature of approximately 370 K, from single twins (a, d, and i) to multiple twinned icosahedral particles (b and h) and further to cuboctahedral shapes (e, f, and i). Copyright: American Physical Society 1986.

NP - Phase DIASRAM

- COMBINATION OF Suburnination RESULTS IN STABILI TY REKIMES WHICH MR f(U) FUR N

Figure 3.22 Phase diagram of gold nanoparticles, showing regions of different well-defined habitus. A region termed quasimelt is also indicated where the particles change their habitus spontaneously [20].

TEM EVIDENCE

Figure 3.23 A series of electron micrographs of The phenomenon of "pseudocrystalling tin particles, taken at intervals of 1/60 s [21]. In particles" can be attributed to a well-de these images the appearance and disappearance particle size-temperature range in a pl of small crystallized regions, called embryos, can diagram (Reprinted with permission fr be seen within the particles (frames c and m). Copyright: Springer 1993.)

DIFFICULT TO OBSERVE TRA. NINHIONS 1/605 IMAGE

MD simuation

MD Simulations of NP dynamics

STRUCTURE OF NP

ROOM T:

-VERY FAST

DYNAMISC,

- RESURFACING OF

NP IS DONE WITHIN

Figure 3.24 Temperature—particle size phase diagram for tin nanoparticles according to Oshima and Takayanagi [21]; conditions as noted for pseudocrystalline particle formation in Figure 3.23 were observed. A schematic drawing of the pseudocrystalline particles is also shown. In the region denominated as crystalline quasimelt, the particles fluctuate between the different possibilities of their habitus.

STRUCTURAL FLUCTUATIONS

RI - MESURE OF THERMAL FILUCTUA-TIOUS.

- SUPER PATTAMA SUE TI'SM.

K. Jun 2 KT

Figure 3.26 Free enthalpy as a function of temperature in the vicinity of a phase transformation. Two areas occur where phases 1 and 2 are stable. However, when $\Delta g_{\rm threshhold} < kT$ is fulfilled, spontaneous fluctuations of the individual particles are possible.

STAUCTURAL FLUCTUATIONS

Som = DGTR WI 2) gm ≤ ki 4 16 1102 - 85 1103 = KT

STOWETURE FL. AFTER RE-AMMANGHERT.

SUmmy + 8, GM - 8, GM / Sx)

Dage - BRAR (Sh)

DSmy + k. GM

TP, 322

Th #

Stoverne tr.

- TEMPERATURE TEL
- 15 VERY MEERTAL

NP

Figure 3.28 Number fractions of gold particles with a diameter of 1.4 nm. Both phases are stable over a broad temperature range [22].

SEETHE MD MOVIES AGAIN.

https://www.youtube.com/watch?v=MJj5XWQHUFE

https://www.youtube.com/watch?v=NWGoE9hwuoo

https://www.youtube.com/watch?v=AQc_mGjjErAl

ECE 5320